Computer Science A Level Transition Task

Task 1: Representation of Numbers from GCSE Level

- Visit isaaccomputerscience.org
- Register a new account
- Join a group with the code: VA8HKR
- Complete the assignment set on the topic of GCSE Representation of Numbers.
- You may need to read the guidance on the site before taking the assignment. Go to Learn -> GCSE Topics -> Data and Information -> Representation of Numbers

Task 2: Fixed-point binary number representation

In the A-Level course you will become familiar with binary representation of negative and fractional numbers initially.

One method of representing fractional numbers is fixed-point representation. This is where the binary point stays in the same place. In this 8-bit number, the **binary point is between the 5th and 6th bits**, although it is not shown:

Denary place value	16	8	4	2	1	0.5	0.25	0.125
Bit	1	0	1	0	1	0	1	0

The binary number shown in the table above is 21.25 or 21 $\frac{1}{4}$: 16 + 4 + 1 + 0.25

Calculate the decimal value of each of the following bit patterns. Show all working.

	Place value								
	16	8	4	2	1	0.5	0.25	0.125	
3a	1	1	1	0	1	0	0	0	
3b	0	1	0	1	0	1	1	1	
3c	1	1	1	0	0	1	1	1	
3d	0	0	0	0	0	1	1	1	
3e	1	1	1	0	0	1	1	0	
3f	0	1	1	1	0	0	1	1	
3g	1	0	1	0	1	1	1	0	
3h	0	0	0	1	0	1	1	1	
3i	0	1	0	1	0	1	0	0	
3j	1	1	0	1	0	1	1	1	

Task 3: Binary Representation of Negative Numbers Using Two's Complement

One method of representing negative numbers is two's complement representation. This is where the most significant bit (the left-most) is the negative of whatever it would usually be:

Denary place value	-128	64	32	16	8	4	2	1
1Bit	1	0	1	0	1	0	1	0

The binary number shown in the table above is -86: -128 + 32 + 8 + 2

Any number with a 1 in the most significant bit will be negative. Any number with a 0 in the most significant bit will be positive.

	Place value									
	-128	64	32	16	8	4	2	1		
4a	1	1	1	0	1	0	0	0		
4b	0	1	0	1	0	1	1	1		
4c	1	1	1	0	0	1	1	1		
4d	0	0	0	0	0	1	1	1		
4e	1	1	1	0	0	1	1	0		
4f	0	1	1	1	0	0	1	1		
4g	1	0	1	0	1	1	1	0		
4h	0	0	0	1	0	1	1	1		
4i	0	1	0	1	0	1	0	0		
4j	1	1	0	1	0	1	1	1		

Calculate the value of each of the following bit patterns: